
Supplementary Materials

Parameter setting for assembly programs. SOAPdenovo (v1.05) is used in our experiments. For viral genome assembly,
increasing the length of kmer used by SOAPdenovo will significantly increase the specificity, but its ability to capture diversity in
the data will decrease. Since it is unclear which k value will yield the best performance, we tested three different values 23, 51,
99, respectively for each dataset. The results are comparable regardless of the values we are using, hence, in the comparison, we
reported the result for k = 23.

The version 39605 of the Arachne package was used when running AV454. An additional component was created (available
on request) to facilitate Arachne processing of paired Illumina reads with a parameter “cov=250”, indicating a downsampling of
reads such that an average of 250x genome coverage is achieved. AV454 module was run with the option “PIPELINE=paired” to
handle Illumina paired reads, and the genome size is set as “GSIZE=10000”. Other parameters were left to default settings.

The default parameter settings are used for all samples when running VICUNA.

Filter creation for target-alike reads. We illustrated our method by creating a filter for HIV1B. The same method can
be applied to other viral genomes. 1057 available full length HIV1B genomes were obtained from the LANL database (http:
//www.hiv.lanl.gov/), representing a wide range of genome diversity. These sequences were directly aligned using MUSCLE 1,
resulting in a multiple sequence alignment (MSA) of length 21679. This is over the twice the length of the standard HIV genome
size (∼10kbp). 17 sequences that create single large insertions in the alignment were removed, since they were likely misassembled.
The remaining sequences were re-aligned, resulting in an alignment with a more reasonable length of 14232. We can further remove
spurious genomes and re-align the remaining ones until satisfactory. The final alignment serves as the filter. Note that to create
MSA for a large number of sequences is compute intensive, and is less accurate as the number of sequences increases. However,
we do not require the filter to be free of mis-assembled sequences, nor do we require the filter to include all previously assembled
genomes.

Profiling. The MSA filter renders each genome equivalent in length by introducing gaps in the alignment. We divide the MSA
into bins, each specified by a 2-tuple bi = 〈si, ei〉, where si (ei) denotes the start (end) position of the ith (0 ≤ i < nb, nb is a
user specified parameter) bin on the MSA. To calculate bi, first identify the longest genome G, and assign |G|/nb bases to each
bin. Then bi = 〈|G| ∗ i/nb, |G| ∗ (i + 1)/nb〉 for 0 ≤ i ≤ nb − 1 if G contains no gaps. Otherwise, bi is adjusted to include gaps. bi
determines the subsequence of each genome that belongs to the ith bin, where the k-spectrum is then calculated. To account for
the case that a read may overlap with two adjacent bins, we include any kmer that overlaps with position si in the k-spectrum of
bi. In addition, low frequency kmers are removed from consideration.

Procedure for assigning read r to bins. 1) For every kmer x in rk, assign it to the ith bin if its k-spectrum contains a d-neighbor
of x. Note, x can be assigned to multiple bins. 2) Consider all kmers in rk that were assigned to the ith bin, if the total number
of positions covered by these kmers in r divided by |r| is above a given threshold t, the ith bin is held as a candidate for r to be
assigned. To account for the case when r spans two bins, we consider kmers in rk that were assigned to adjacent bins. 3) Consider
the paired reads (r, r′): assign both concurrently to bins that obey the maximum distance constraint of the paired read library
size. Otherwise, we use a more stringent threshold t′ (> t) to assign them individually.

References

1. Edgar, R. C. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5), 1792–7
(2004).

0 2000 4000 6000 8000 10000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

V4809 Coverage vs DENV_SRI00

Position

C
ov

er
ag

e

●

0 2000 4000 6000 8000 10000

0
10

00
0

20
00

0
30

00
0

V4813 Coverage vs DENV_SRI00

Position

C
ov

er
ag

e

●

0 2000 4000 6000 8000 10000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

V4816 Coverage vs DENV_SRI00

Position

C
ov

er
ag

e

0 2000 4000 6000 8000 10000

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

V4820 Coverage vs DENV_SRI00

Position

C
ov

er
ag

e

●

0 2000 4000 6000 8000 10000

0
50

00
10

00
0

15
00

0

V4526 Coverage vs WNV_NY99

Position

C
ov

er
ag

e

●●●

0 2000 4000 6000 8000 10000

0
50

00
10

00
0

15
00

0

V4528 Coverage vs WNV_NY99

Position

C
ov

er
ag

e

0 2000 4000 6000 8000 10000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

V5044 Coverage vs WNV_NY99

Position

C
ov

er
ag

e

●

0 2000 4000 6000 8000 10000

0
50

00
10

00
0

15
00

0

V5048 Coverage vs WNV_NY99

Position

C
ov

er
ag

e

●●●

0 2000 4000 6000 8000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

V5937 Coverage vs HXB2

Position

C
ov

er
ag

e

● ●

0 2000 4000 6000 8000

0
10

00
0

20
00

0
30

00
0

40
00

0

V5938 Coverage vs HXB2

Position

C
ov

er
ag

e

●●

0 2000 4000 6000 8000

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

V5943 Coverage vs HXB2

Position

C
ov

er
ag

e

●● ● ●●

0 2000 4000 6000 8000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

V5945 Coverage vs HXB2

Position

C
ov

er
ag

e

●● ●●●●●● ●

Supplementary Figure 1: Fold sequence coverage across the target region of Dengue, WNV, and HIV full length genomes.
Alignments are to standard references (see Methods). Four horizontal lines on each figure represent amplicons used for generating
the corresponding data set. Triangles and circles denote the non-dominant variant calls by AV454 and VICUNA, respectively,
with respect to the reference genomic position.

Supplementary Table 1: Datasets from Clinical WNV, DENV, and HIV Samples.
Virus V# NCBI SRA & Number % Reads % Target Average (%) Divergence

VICUNA of reads aligning to region coverage between
assembly standard covered reference
accession reference and sample*

V4526 XXXX 305,162 95.28 100.00 6262.0 0.214
WNV V4528 XXXX 322,134 95.01 100.00 6527.9 0.165

V5044 XXXX 434,800 95.11 100.00 8744.9 0.116
V5048 XXXX 316,880 95.04 100.00 6429.7 0.252
V4809 XXXX 645,516 93.93 100.00 12975.8 5.770

DENV V4813 XXXX 768,698 93.29 100.00 15456.8 5.751
V4816 XXXX 641,024 93.77 100.00 12951.8 5.760
V4820 XXXX 952,954 91.78 100.00 18733.4 5.829
V5937 XXXX 568,380 87.77 100.00 12451.0 6.978

HIV V5938 XXXX 453,648 90.52 100.00 9990.7 6.062
V5943 XXXX 134,894 92.60 100.00 3210.9 6.410
V5945 XXXX 440,260 89.98 100.00 10115.1 6.283

*This is calculated in the same way as non-dominant call rate.

ACGTCGATA	 ATGTCGATA	 TTGATACCC	

4-‐mers	 	 	 	 	 	 Hash-‐value	
	
ACGT 	 	 1569	
CGTC 	 	 63854	
GTCG 	 	 912	
TCGA 	 	 4238	
CGAT 	 	 7	
GATA 	 	 668512	

4-‐mers	 	 	 	 	 	 Hash-‐value	
	
TTGA 	 	 2358	
TGAT 	 	 29	
GATA 	 	 668512	
ATAC 	 	 215	
TACC 	 	 1111	
ACCC 	 	 36445	

4-‐mers	 	 	 	 	 	 Hash-‐value	
	
ATGT 	 	 3269	
TGTC 	 	 938548	
GTCG 	 	 912	
TCGA 	 	 4238	
CGAT 	 	 7	
GATA 	 	 668512	

ACGTCGATA	
ATGTCGATA	

s	 =	 101011	
	

AGCG	
TTGA	
GCAT	
TGTA	

s	 =	 101011	
	

TGTA	
TAAC	
GTCC	
AACC	

ATGTCGATA	
	 	 	 	 	 	 	 	 TTGATACCC	

r1	 r2	 r3	

Supplementary Figure 2: An example of contig construction. The k-spectrum (k = 4) of reads r1, r2, and r3 are computed and
hashed to an integral space. r1 and r2 share a common min hash value of 7, and hence can be clustered and aligned. When we
further use a gapped seed, 101011, where a ‘0’ denotes an ignored position, to generate gapped-4-mers of r2 and r3, a common
4-mer “TGTA” can be identified, leading to the clustering of r2 and r3. In both cases, the 4-mers that lead to the clustering are
underlined. We can see both techniques tolerate base differences (colored red) that may due to sequencing error or true variation.
Note that the illustration of min hash technique in this example is a simplified version compared to the one used in our algorithm.

... ...

Ref

... ...

... ...

Ref

... ...

(a) (b)

Supplementary Figure 3: Chimeric contig. Each read is represented as a short line, assigned with the same color as the fragment
of the reference genome from which the read is sampled. Cause of chimeric contig due to (a) local homology among reads, or (b)
chimeric reads, colored both red and blue, consisting of fragments from disjoint locations on the reference.

Supplementary Table 2: Large deletions in Clinical Samples.
V# Virus RefStart RefEnd RegionStart RegionEnd Observed

in 454 data?

V4809 DENV 3655 5341 NS2A NS3 no
V4820 DENV 5270 8233 NS3 NS5 no

390 2713 Caps NS1 no
6236 7817 NS3 NS5 no
651 3000 Memb NS1 no

V5937 HIV 6085 7420 Env Env yes
6309 6848 Env Env yes
6302 7348 Env Env yes

V5938 HIV 5768 7546 Env Env yes
6441 7977 Env Env yes
5863 8247 Env Env yes
2468 4084 Pol Pol no

V5943 HIV 2510 4402 Pol Vif yes
V5945 HIV 6060 7498 Env Env yes

6362 7158 Env Env yes
4496 6316 Vif Env yes
2627 4546 Pol Vif yes

Supplementary Table 3: VICUNA Assembly Results for 454 Clinical Samples.
Virus V# # Input # Output % Target # Contigs used % Target region % Reads Non-

reads contigs region for reference covered by the aligning to dominant
(≥ 350bp) covered guided merging longest contig consensus call rate (%)

WNV V4954 40,942 9 100 1 100 92.55 0
DENV V4639 18,254 2 100 1 100 95.00 0
HIV V4139 28,963 1 100 1 100 98.53 0

Contig1

Contig2

Contig1

Contig2

length polymorphism

insertion substitution

Contig1

Contig2

Supplementary Figure 4: Alignment of two contigs 1 and 2 that are represented as long lines. Common kmers between them are
denoted as rectangles (top panel), these kmers are extended to form maximal common substrings (middle panel), which are forced
to be aligned to each other. Inter-alignment regions may be resulted from length polymorphisms and sequencing errors (insertion,
deletion and substitutions), which are further aligned using Needleman-Wunsch algorithm (bottom panel).

Supplementary Algorithm 1 Contig construction via min hash and spaced-seed.

Require: R = {r1, r2, . . . , rn}, spaced-seed s
1: For each read ri ∈ R, generate two min hash values, respectively, for its forward and reverse complementary strands.
2: Cluster reads that share common min hash values to form initial contigs
3: D← ∅
4: for each ri ∈ R do
5: Si ← ∅
6: for j = 0→ |ri| − |s|+ 1 do
7: x← apply s to ri[j, j + |s| − 1]
8: Si = Si ∪ {〈x, (i, j)〉}
9: end for

10: if ∃S ∈ Si such that S.key = S′.key, where S′ ∈ D then
11: Let r′ denote the read, where S′.key belongs
12: Identify the two contigs Ci (may not exist) and C ′, where ri ∈ Ci and r′ ∈ C ′

13: if neither Ci nor C ′ contains both ri and r′ then
14: Add ri to C ′

15: end if
16: else
17: D = D ∪ {Si}
18: Create a singleton contig that contains only ri
19: end if
20: end for

Supplementary Algorithm 2 Contig clustering via common reads.

1: Generate a 2-tuple 〈id(r), id(C)〉 for each read r that is contained by contig C and at least by one other contig. The results
are stored in Mrc

2: while Mrc is not empty do
3: Sort contigs by the number of reads they contain in a decreasing order
4: Flag all contigs as unprocessed
5: while ∃ some unprocessed contig do
6: Identify the first one in the list, let it be C
7: Identify neighbors of C using Mrc.
8: Merge C with its neighbors and flag all contigs involved as processed
9: Update Mrc by reassigning reads to new contigs when applicable

10: end while
11: end while

Supplementary Algorithm 3 Contig validation.

Require: an input contig C, parameters maxd, maxrt, minol

1: Initialize contig list C† to be empty
2: repeat
3: Ccur ← C
4: Generate consensus for Ccur

5: Initialize contig Crem ← ∅
6: repeat
7: for each read r in C do
8: Measure the distance d between r and C
9: if d > maxd then

10: Ccur = Ccur \ {r} and update consensus
11: Crem ← Crem ∪ {r}
12: end if
13: end for
14: until no change was applied to C
15: Add Ccur to C
16: Ccur ← Crem

17: until Ccur = ∅
18: for each contig C ∈ C do
19: Generate the layout (r1, r2, . . . , r|C|) of C
20: Calculate nb

na
for each read in the layout

21: Split C at ri when either the overlap between ri and ri−1 is < minol or nb

na
> maxrt for ri−1

22: Replace C with the resulting contigs if split occurred
23: end for

†C stores the resulting list of contigs.

Supplementary Algorithm 4 Contig extension.

Require: an input vector of contigs C.
1: Sort C in an order of decreasing length
2: Generate a 2-tuple 〈id(r), id(C)〉 for each read r contained in contig C. The results are stored in Mrc

3: while existing more contigs to be processed do
4: Select target contig Cl ← the first element of C
5: Get neighbors N of Cl via Mrc

6: Sort N in an increasing order of the number of paired-reads shared with Cl

7: Compute delegates for Cl and each contig in N
8: while N is not empty do
9: Cr ← the last element of N

10: Compare delegate dgl of Cl with dgr (algorithm 5)
11: if a significant prefix-suffix alignment is identified then
12: Merge contig Cl to Cr & update dgr
13: Update N to include neighbors of Cr & calculate delegates for newly included contigs
14: Update Mrc

15: end if
16: Remove the last element from N
17: end while
18: end while

Supplementary Algorithm 5 Alignment of two sequences s0 and s1.

Require: parameters k, minol, mins, maxd, maxoh

1: Identify every common kmer x between s0 and s1, and record x along with its start positions (p0s, p
1
s) as a 2-tuple 〈x, (p0s, p1s)〉

in array A
2: Sort A in an increasing order with respect to p0s
3: Flag each entry of A as unprocessed.
4: for i = 0→ |A| − 1 do
5: if A[i], the ith element of A, is flagged as unprocessed then
6: a← A[i]
7: Add 〈p0s, p0e, p1s, p1e〉 to V†, where pij is the start (j = s) or end (j = e) positions of a.key on si (i = 0, 1)
8: for j = i→ |A| − 1 do
9: b← A[j]

10: if b.key starts within a.key then
11: Update V if the two kmers can be joined to be a common substring of s0 and s1
12: Flag b.key as processed
13: else if b.key starts after a.key but within maxd then
14: Add the coordinates of b.key to V
15: a← b
16: else
17: Generate prefix-suffix alignment between s0 and s1 relying on V
18: If a valid alignment can be identified, accept this alignment and exit
19: end if
20: end for
21: end if
22: end for

†V, initially empty, is an array of 4-tuples: 〈i0, i1, i2, i3〉, where s0[i0, i1] = s1[i2, i3]

